skip to main content


Search for: All records

Creators/Authors contains: "Starr, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wetlands are the largest natural source of methane (CH4); however, the contribution of subtropical wetlands to global CH4 budgets is still unclear due to difficulties in accurately quantifying CH4 emissions from these complex ecosystems. Both direct (water management strategies) and indirect (altered weather patterns associated with climate change) anthropogenic influences are also leading to greater uncertainties in our ability to determine changes in CH4 emissions from these ecosystems. This study compares CH4 fluxes from two freshwater marshes with different hydroperiods (short versus long) in the Florida Everglades to examine temporal patterns and biophysical drivers of CH4 fluxes. Both sites showed similar seasonal patterns across years with higher CH4 release during wet seasons versus dry seasons. The long hydroperiod site showed stronger seasonal patterns and overall, emitted more CH4 than the short hydroperiod site; however, no distinctive diurnal patterns were observed. We found that air temperature was a significant positive driver of CH4 fluxes for both sites regardless of season. In addition, gross ecosystem exchange was a significant negative predictor of CH4 emissions in the dry season at the long hydroperiod site. CH4 fluxes were impacted by water level and its changes over site and season, and time scales, which are influenced by rainfall and water management practices. Thus with increasing water distribution associated the Comprehensive Everglades Restoration Plan we expect increases in CH4 emissions, and when couple with increased with projected higher temperatures in the region, these increases may be enhanced, leading to greater radiative forcing. 
    more » « less
  2. Abstract. Understanding the sources and sinks of methane (CH4)is critical to both predicting and mitigating future climate change. Thereare large uncertainties in the global budget of atmospheric CH4, butnatural emissions are estimated to be of a similar magnitude toanthropogenic emissions. To understand CH4 flux from biogenic sourcesin the United States (US) of America, a multi-scale CH4 observationnetwork focused on CH4 flux rates, processes, and scaling methods isrequired. This can be achieved with a network of ground-based observationsthat are distributed based on climatic regions and land cover. To determinethe gaps in physical infrastructure for developing this network, we need tounderstand the landscape representativeness of the current infrastructure.We focus here on eddy covariance (EC) flux towers because they are essentialfor a bottom-up framework that bridges the gap between point-based chambermeasurements and airborne or satellite platforms that inform policydecisions and global climate agreements. Using dissimilarity,multidimensional scaling, and cluster analysis, the US was divided into 10clusters distributed across temperature and precipitation gradients. Weevaluated dissimilarity within each cluster for research sites with activeCH4 EC towers to identify gaps in existing infrastructure that limitour ability to constrain the contribution of US biogenic CH4 emissionsto the global budget. Through our analysis using climate, land cover, andlocation variables, we identified priority areas for research infrastructureto provide a more complete understanding of the CH4 flux potential ofecosystem types across the US. Clusters corresponding to Alaska and theRocky Mountains, which are inherently difficult to capture, are the mostpoorly represented, and all clusters require a greater representation ofvegetation types. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO 2 exchange (NEE) and ecosystem respiration ( R eco ) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature ( T water ), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO 2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m −2  day −1 and aquatic respiration ( R Aq ) from 0 to 6.13 g C m −2  day −1 . Nonlinear interactions between water level, T water , and GAPP and R Aq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux. 
    more » « less
  7. Abstract. Global ecosystems vary in their function, and therefore resilience to disturbance, as a result of their location on Earth, structure, and anthropogenic legacy. Resilience can therefore be difficult to describe solely based on energy partitioning, as it fails to effectively describe how ecosystems use available resources, such as soil moisture. Maximum entropy production (MEP) has been shown to be a better metric to describe these differences as it relates energy use efficiencies of ecosystems to the availability of resources. We studied three sites in a longleaf pine ecosystem with varying levels of anthropogenic legacy and biodiversity, all of which were exposed to extreme drought. We quantified their resilience from radiative, metabolic and overall MEP ratios. Sites with anthropogenic legacy had ~10% lower overall and metabolic energy use efficiency compared to more biodiverse sites. This resulted in lower resilience and a delay in recovery from drought by ~1 year. Additionally, a set of entropy ratios to determine metabolic and overall energy use efficiency explained more clearly site-specific ecosystem function, whereas the radiative entropy budget gave more insights about structural complexities at the sites. Our study provides foundational evidence of how MEP can be used to determine resiliency across ecosystems globally.

     
    more » « less
  8. Abstract. Ecosystems are open systems that exchange matter and energy with theirenvironment. They differ in their efficiency in doing so as a result of theirlocation on Earth, structure and disturbance, including anthropogenic legacy.Entropy has been proposed to be an effective metric to describe thesedifferences as it relates energy use efficiencies of ecosystems to theirthermodynamic environment (i.e., temperature) but has rarely been studied tounderstand how ecosystems with different disturbance legacies respond whenconfronted with environmental variability. We studied three sites in alongleaf pine ecosystem with varying levels of anthropogenic legacy and plantfunctional diversity, all of which were exposed to extreme drought. Wequantified radiative (effrad), metabolic and overall entropychanges – as well as changes in exported to imported entropy(effflux) in response to drought disturbance and environmentalvariability using 24 total years of eddy covariance data (8 years per site).We show that structural and functional characteristics contribute todifferences in energy use efficiencies at the three study sites. Our resultsdemonstrate that ecosystem function during drought is modulated by decreasedabsorbed solar energy and variation in the partitioning of energy and entropyexports owing to differences in site enhanced vegetation index and/or soilwater content. Low effrad and metabolic entropy as well as slowadjustment of effflux at the anthropogenically altered siteprolonged its recovery from drought by approximately 1 year. In contrast,stands with greater plant functional diversity (i.e., the ones that includedboth C3 and C4 species) adjusted their entropy exports when facedwith drought, which accelerated their recovery. Our study provides a pathforward for using entropy to determine ecosystem function across differentglobal ecosystems.

     
    more » « less
  9. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less